
Computational Visual Media
https://doi.org/10.1007/s41095-022-0288-2 Vol. 9, No. 3, September 2023, 581–596

Research Article

Autocompletion of repetitive stroking with image guidance

Yilan Chen1, Kin Chung Kwan2, and Hongbo Fu1 (�)

c© The Author(s) 2023.

Abstract Image-guided drawing can compensate for
a lack of skill but often requires a significant number
of repetitive strokes to create textures. Existing
automatic stroke synthesis methods are usually limited
to predefined styles or require indirect manipulation
that may break the spontaneous flow of drawing. We
present an assisted drawing system to autocomplete
repetitive short strokes during a user’s normal drawing
process. Users draw over a reference image as usual;
at the same time, our system silently analyzes the
input strokes and the reference to infer strokes that
follow the user’s input style when certain repetition
is detected. Users can accept, modify, or ignore
the system’s predictions and continue drawing, thus
maintaining fluid control over drawing. Our key idea is
to jointly analyze image regions and user input history
to detect and predict repetition. The proposed system
can effectively reduce the user’s workload when drawing
repetitive short strokes, helping users to create results
with rich patterns.

Keywords interaction; autocompletion; digital drawing;
prediction; texture synthesis

1 Introduction

Drawing is a common form of artistic expression. By
varying the strokes, texture, and shading, artists can
create drawings in various styles [1]. However, it
remains a largely manual process that may require
significant artistic expertise and repetitive manual
labor.

1 School of Creative Media, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
E-mail: Y. Chen, yil.ellen.chan@gmail.com; H. Fu,
hongbofu@cityu.edu.hk (�).

2 University of Konstanz, University Street 10, 78464
Konstanz, Germany. E-mail: kckwan@ieee.org.

Manuscript received: 2022-03-04; accepted: 2022-04-18

To reduce repetitive workload, various methods
have been proposed to automatically synthesize
strokes from user-provided examples [4–6] or through
procedural steps [7]. However, these methods usually
perform in batches, reducing user participation in
the creative artistic process. Furthermore, since
many methods have predefined styles and only allow
users to modify a few global parameters, the final
results may look monotonous and lack originality
(see Fig. 1). Other interactive systems [8, 9] preserve
the normal drawing flow while automating significant
stroke synthesis. We share a similar goal to theirs.
However, they typically target experts, requiring
artistic expertise for high-level picture composition
and fine-grained control.

One common way to overcome this skill barrier is
to use a reference photo as a scaffold for drawing, by
tracing a reference photo physically using transparent
paper, or digitally via layers in digital drawing
applications. Prior research [10] shows that even
when a reference image is used as a scaffold, people
still enjoy the freedom of individual expression. We
thus propose to enhance drawing using an image

Fig. 1 Style comparison. (a) Our work is designed to reduce
the workload of completing repetitive patterns during the manual
drawing process. Full control over the drawing process leads to more
dynamic results than (b) Photoshop’s art history brush tool [2] and
(c) StippleShop [3].

581

582 Y. Chen, K. C. Kwan, H. Fu

scaffold by automating tedious repetitions. Our idea
is to bridge the two extremes: manual drawing, which
allows full control but can be tedious, and image-
based algorithmic synthesis, which saves effort but
provides limited user control and interactivity. As
the first attempt towards this goal, we focus on
autocompleting repetitive short strokes, which are
very common in pen-and-ink drawing (see Fig. 2),
under the guidance of a reference image. As in typical
digital drawing applications, users can draw freely on
a reference image with our system. Meanwhile, our
system analyzes the relationships between user inputs
and the reference image, detects potential repetitions,
and suggests what users might want to draw next.
Users can accept, reject, or ignore the suggestions
and continue drawing, thus maintaining fluid control
of drawing. See Fig. 3 for an example.

The major contribution of this paper is the
technical design of an image-guided autocompletion
drawing tool that can preserve the natural drawing
process and individual user styles. Our approach

Fig. 2 Inspiring manual drawings by artists.

is inspired by image analogy [4] and operation
history analysis and synthesis [9] while leveraging
two key insights. Firstly, since the act of drawing
repetitive strokes usually indicates specific intentions
(e.g., filling an object or hatching a shaded region),
we use common image features shared by the
coherent repetitive strokes to infer the intended
region. Secondly, the drawing is usually related to
the underlying reference image (e.g., the density of
strokes depends on image brightness). Therefore,
we analyze the properties of both the drawing and
the reference image to infer possible relationships as
contextual constraints for stroke prediction.

We have implemented a prototype and conducted
a pilot study with participants from different
backgrounds to evaluate its utility and usability.
The quantitative analysis and qualitative feedback,
as well as various drawing results created by the
users, suggest that our system effectively reduces
user’s workload when drawing repetitive short strokes,
helping users to create results with rich patterns.

2 Related work

2.1 Image-assisted drawing

Many drawing support tools adopt reference images
and provide intelligent assistance to novices, e.g.,
beautifying user’s sketches with extracted image
features [10–13], or providing educational guidance
to novice users [14–16]. We share a similar goal
to Refs. [17–19] of reducing the user’s workload.
However, these works use predefined algorithms to

Fig. 3 Example of our system workflow. (a) A user stipples over a leaf region of a reference image while our system predicts what she might
draw next (b) (blue strokes: inferred exemplars; pale red region: inferred target region; semi-transparent strokes: system suggestions), (c) which
is then accepted by the user (green strokes: user inputs or accepted suggestions). (d) shows the manually drawn content (black, 261 strokes)
and autocompleted content (red, 3510 strokes). (e) shows the final result; note the different repetitive stroke patterns in different regions. Our
autocompletion system can reduce tedious repetitive input, while providing full user control.

Autocompletion of repetitive stroking with image guidance 583

generate strokes guided by cursor movement and
only take the user’s input as an indicator of where
to render, thus greatly limiting the user’s artistic
freedom. In contrast, we aim to provide more
flexibility between automatic synthesis and manual
artistic control by autocompleting tedious repetitions
during the user’s normal drawing processes.

2.2 Image-based artistic rendering

Our work is related to image-based artistic rendering
(IB-AR) [20], especially stroke-based methods and
example-based methods.

Stroke-based methods create artistic results from
images by strategically generating brushstrokes whose
properties (e.g., position, density, orientation, color,
size) are related to image properties (e.g., gradient,
edges, color, salience) [7]. Among those methods,
the closest to ours are the early image-based pen-
and-ink rendering methods [21, 22], which allow
users to input sample elements for distribution.
However, users have to prepare the sample elements
separately (usually as a standalone file) and then
adjust parameters to produce the rendered output.
In contrast, our system lets users directly provide
exemplars on a reference image while silently inferring
the distribution properties.

Example-based methods aim to model the visual
features of example images for transferal. There
are two major modeling approaches: the parametric
approach [6, 23, 24] that is based on statistical
analysis of stroke characteristics, thus preserving
global textures better, and the non-parametric
approach [4, 5, 25] based on patch-wise mapping,
thus capturing local structures better. We combine
both methods to generate strokes: the parametric
approach is used to infer statistical relationships
between stroke properties and image features, and the
patch-wise matching method is used to preserve the
local arrangement of strokes. Stylit [5] allows users to
stylize a rendered ball and simultaneously propagates
the style to arbitrary 3D shapes. Our method shares a
similar idea of interactive style propagation, but with
two main differences. Firstly, instead of propagating
a style globally, we propagate a style to perceptually
similar local areas so that users can conveniently
define different styles in different areas. Secondly, we
represent drawings as discrete stroke operations instead
of raster textures to better preserve their structure, e.g.,
changing the color or size of the drawn strokes.

2.3 Operation history-assisted authoring

Operation histories [26] have been leveraged for
various authoring tasks, such as sketching [9],
animation [27, 28], modeling [29, 30], beautification
of freehand drawings [31], and handwriting [32].
Our work is most closely related to that of Xing
et al. [9], which autocompletes repetitive sketching
by analyzing dynamic operations recorded during
authoring. Our method extends their work to
consider additional information from a reference
image and thus enables the propagation of strokes to
regions with similar image attributes such as color or
semantic meaning.

In our use case, an operation is an input stroke,
so our work is also related to stroke pattern analysis
and synthesis [8, 33–36]. These works disregard the
temporal relationships between past strokes, and do
not use image guidance, so are different from ours.

We summarise the major differences between our
work and the discussed closely related work in Table 1.

Table 1 Differences between our tool and closely related work.
B means generation is performed in batches, based on predefined
attributes, while Dy means generation is based on dynamic operation
history. S indicates operation on strokes, P on pixels. Di means users
can specify a style by directly operating on the output, I indicates
indirect interaction Y and N represent yes and no, respectively, for
using image references

Method Ref. [22] Ref. [4] Ref. [6] Ref. [8] Ref. [9] Ours
Reference Y Y Y N N Y
Process B B B B Dy Dy
Format S P S S S S
Operate I I I Di Di Di

3 User interface

Our system prototype follows a standard
digital drawing interface, with addition of our
autocompletion feature, as shown in Fig. 4. The
user draws on top of the reference image displayed
semi-transparently on the main canvas, while our
system analyzes the input strokes and the reference
image in the background.
3.1 Autocompletion

In autocompletion mode, our system automatically
performs analysis whenever the user finishes a new
stroke. When a potential repetition is detected, our
system highlights the current repetitive strokes and
an inferred propagation region, updates the inferred
parameters in the filling property panel, and generates

584 Y. Chen, K. C. Kwan, H. Fu

Fig. 4 User interface, comprising (a) a central drawing canvas,
(b) a toolbar for drawing and selection, (c) a toggle-switch for
autocompletion mode, (d) a brush property toolbar, (e) a filling
property toolbar, and (f) a layer panel.

an autocompletion suggestion. Users can accept or
reject the suggestion using hotkeys, accept part of
it using lasso selection, or ignore it and continue
to draw (Fig. 5). The suggestion will continuously
update according to user input.

3.2 Interactive editing

Our system provides a set of tools to refine the
autocompleted results.

Propagation region editing. Users can create,
add, or subtract a region using the intelligent scissors
tool [37], or expand an existing region by a fixed width
(see Fig. 4(e)) for stroke autocompletion. Figure 6
shows an example of creating a new region for stroke
regeneration.

Density editing. Users can modify three para-
meters to adjust the density of the generated strokes:
the average spacing, the lightness coefficient, and
the gradient coefficient. The latter two define the
relationships between density and image lightness
and gradient, respectively. Our system automatically
updates these parameters upon prediction, and the
updated parameters provide a starting point for user
manipulation. Figure 7 shows an example.

Orientation editing. Our system automatically
predicts whether the input exemplar is correlated
with the image flow; orientation can also be adjusted
by the user manually. The user can also modify the
image flow field using the gesture brush, and the
touched strokes will be rotated to be aligned with the
gesture. See Fig. 8 for an example.

Fig. 5 An example of autocompletion. The user selects part of the suggestion using the lasso tool (a) with the result shown in (b), then
continues to draw leading to the updated suggestion (c), and accepts all the suggestions using a hotkey (d). The blue strokes in (a) and (c)
indicate inferred exemplars from the user’s input strokes.

Fig. 6 Region editing example. The initial prediction (a) contains only the brown region. The user-specified region (b) contains the entire
apple, with the corresponding synthesis result in (c).

Autocompletion of repetitive stroking with image guidance 585

Fig. 7 Density editing example with different values of spacing, lightness, and gradient parameters. Larger spacings lead to sparser strokes,
while greater lightness and gradient lead to larger stroke density variations.

Fig. 8 Orientation editing example. (a) User gesture. (b) Orientation field updated based on the user gesture and the original image flow field.
(c) Updated result. (d) Result without any orientation field.

3.3 Auxiliary functions

Our prototype also includes the auxiliary functions
below. These are not unique to our system but can
facilitate the usual drawing processes.

Post-editing stroke properties. Users can
select existing strokes and edit their properties, such
as size and color.

Auto-coloring. This function, when used, can
automatically colorize strokes with color from the
reference image.

View switching. Users can press the space key
to switch between the canvas view, reference view,
and pure drawing view.

4 Approach

Our system involves two key steps: (i) inferring
the input exemplar, the output region, and the
contextual constraints from the stroke history and
the reference image, and (ii) synthesizing suggestive
strokes accordingly. Section 4.1 first describes how to
synthesize strokes, assuming that all the information
is available, and then Section 4.2 explains how to
infer the necessary information for synthesis.

4.1 Stroke synthesis

4.1.1 Problem statement
The inputs to our stroke synthesis method include
an exemplar E consisting of repetitive strokes, the
reference image I, a target region mask M , an
orientation map O, and a radius map R. Pixel values
of R determine the stroke spacing: a smaller value
leads to a denser distribution. Our goal is to compute
an output set of strokes X over the output region
M , such that X is similar to E with respect to I.
We describe how to infer E, M , O, and R from user
interaction with I in Section 4.2.

4.1.2 Idea
To support autocompletion using the reference
image, we extend the discrete element texture
synthesis method [9, 38], which represents strokes
as point samples and iteratively improves the
sample distribution by minimizing the neighborhood
difference between the exemplar and the output, using
an additional reference image. Firstly, we combine
sample neighborhoods [38] with image features [4]
to measure neighborhood differences. Secondly, the
range and orientation of each sample neighborhood

586 Y. Chen, K. C. Kwan, H. Fu

is determined by the radius and orientation maps
inferred from the reference image. Figure 9 shows
our key idea.
4.1.3 Stroke representation
A stroke s is an ordered list of sample points, each
with a timestamp and appearance attributes such as
thickness and color. Here we focus on autocompleting
short strokes, so we represent each stroke by its
centroid p and the average direction v (see Fig. 10)
for efficiency of synthesis, without considering any
other information about the original stroke. To
take drawing order into consideration, we obtain the
dominant direction by averaging the vectors from the
start point to each subsequent point. After synthesis,
we reconstruct all sample points according to the
updated centroid and direction.
4.1.4 Initialization
We pre-process the target region mask M by removing
the area occupied by existing strokes in the same
layer to avoid clutter, and then initialize the output
X by generating sample positions with Poisson-disk
sampling based on the radius map R. For each
sampled position, we copy the input stroke with the

Fig. 9 Synthesis algorithm. We synthesize the predicted strokes
(green) from previously drawn strokes (gray) by matching their
neighborhoods as well as image features.

Fig. 10 Left: A stroke, with centroid p and dominant direction v.
Right: The neighborhood of the black stroke includes the n (n = 1
in this example) closest strokes (green) from each quadrant and the
middle image patch (blue pixel grid).

smallest image feature distance dI , which will be
explained in Eq. (2). We then optimize the output
for several objectives, as detailed below.
4.1.5 Neighborhood term
We define the neighborhood of a stroke s by both
its neighboring strokes as well as an R(s) × R(s)
image patch around its centroid, where R(s) is the
radius value at s. Prior methods (e.g., Ref. [38])
determine the neighboring strokes by spatial distance.
Thus, the neighborhood radius should be large
enough to capture any underlying pattern. However,
this might include redundant strokes and thus
decrease performance. Therefore, we adopt Zhao and
Zhu’s method [39] to automatically find a minimal
representative neighborhood, considering not only
the distances between strokes but also their locations.
As Fig. 10(b) shows, we set the neighborhood radius
of the center stroke s to 2R(s). We then divide
all strokes within the neighborhood radius into four
quadrants with respect to the local frame defined by
the orientation at O(s), and collect the n nearest
strokes from each quadrant as the representative
neighborhood N(s). In our implementation, we set
n = 4 for the input exemplar and n = 1 for the output
strokes to ensure that each output neighborhood can
be maximally matched.

For a stroke s and a neighboring stroke s′ ∈N(s),
we compute their offsets in position and direction
to be

û(s′, s) =
(
O(s)−1 (p(s′)− p(s)) /R(s) ,
O(s)−1 (v(s′)− v(s))

)
(1)

where O(s)−1 indicates rotating the vector inversely
to O(s). Note that the position and direction
difference is computed in the local frame defined by
the density map and orientation map. For an output
stroke so and an input stroke si, we first find their best
matching pairs {(s′o, s′i)} in the neighborhoods N(so)
and N(si) using the Hungarian algorithm [38, 40].
We use the norm-2 distance of the offsets from so or
si in Eq. (1) as the matching cost. The neighborhood
distance is then defined as

dneigh(so, si) =
∑

s′
o∈N(so)

|û(s′o, so)− û(s′i, si)|
2

+ µ | I(so)− I(si)|2︸ ︷︷ ︸
dI

(2)

The second term measures the image feature distance
dI ; µ (= 0.1 in our implementation) controls its

Autocompletion of repetitive stroking with image guidance 587

relative weight. We use the mean Lab* color of an
r× r patch at the stroke centroid as the image feature
vector. The overall neighborhood term to minimize is

φneigh(X,E) =
∑

so∈X

min
si∈E

dneigh(so, si) (3)

4.1.6 Correction term
Since the neighborhood term is a one-way matching
from output neighborhoods to input neighborhoods,
sometimes optimization may tend to leave out some
void regions. Furthermore, the neighborhood term
does not preserve the alignment of strokes to the
image (e.g., see Fig. 11(e)). To address these issues,
we apply a correction term. We compute a weighted
centroidal Voronoi diagram from all the strokes’
center points, using 1/R as weight; we denote the
computed region centroids as {p̄}. Then we can
minimize the total distance between each output
stroke centroid and the region centroid, defined as
Eq. (4):

φcorr(X) =
∑

so∈X

|p(so)− p̄(so)|2 (4)

4.1.7 Solver
The energy function we aim to minimize is defined as

φ(X,E) = (1− w)φneigh + wφcorr (5)

We iteratively minimize the energy function
following the EM methodology in Ref. [38]. In each
iteration, for each output stroke so, we search for the
closest matching input stroke si to minimize φneigh,
compute the Voronoi diagram centroid p̄ to minimize
φcorr, and solve a least-squares system combining
both terms. Let m be the total number of iterations.
For the i-th iteration, we set w = (i/m)2, so that
more weight is given to φneigh in earlier iterations, to
optimize the neighborhood distribution first before
making corrections: this leads to better results.

Figures 11(b)–11(d) show iterative optimization
of both objectives. For comparison, Fig. 11(e)
shows the result without the correction term and
Fig. 11(f) shows the result without using the image
neighborhood in both initialization and optimization.

Fig. 11 (a) Input. (b–d) Iteration process. (e, f) Ablation studies. Without the correction term φcorr the predicted strokes tend to cluster
together (e). Without the image term dI the predicted strokes may not follow the reference sufficiently (f).

588 Y. Chen, K. C. Kwan, H. Fu

4.2 Inference

In this section, we describe how we infer E, M , O,
and R for synthesis from user interactions with I.
4.2.1 Input exemplar E
In this step we aim to detect whether stroke
repetitions exist and obtain the repetitive group as
an exemplar for the synthesis process. Since people
usually draw strokes in a coherent manner [9] and
they usually have specific intentions when drawing
repetitive strokes, we assume the example strokes to
be temporally consecutive and to have certain similar
properties.

We start from the last stroke input by the
user and search backward in the stroke sequence
to incrementally find strokes with similar shape
and image features to the last stroke. Stroke
shape similarity is measured using the Fréchet
distance, while the image features include Lab*
color (weighted by 0.12, 0.44, and 0.44 to suppress
the impact of lightness) and precomputed semantic
segmentation [41] at a stroke’s center. Alternatively,
one could use different image features to capture
different drawing intentions. We compare the
standard deviation of a feature in the traversed k

strokes against a threshold (15/255 for the color
feature, 1 for the segmentation feature) for similarity
measurement. Back-traversal stops when the next

stroke does not contain a similar feature or k > 50.
These k strokes serve as the input exemplar for the
synthesis process. See Fig. 12 for an example of the
incremental search process.
4.2.2 Output region M

The shared features of the obtained stroke exemplar
also indicate the intended region. For instance,
if all exemplar strokes lie inside the same object
segmentation region, it is very likely that the user
intends to fill that region. Therefore, we use the
shared features obtained in the exemplar grouping
process to find a similar region for output.

Since we have only two features in our implemen-
tation, we simply obtain the region by GrabCut [42]
if the Lab* color feature is shared by the exem-
plar strokes, we directly take the corresponding
segmentation if the semantic feature is shared, and
we take the intersection if both features are shared.
See Fig. 12 for an example. When there are multiple
disconnected regions, we retain the nearest region to
the user’s last stroke and discard the remainder, as
it is less natural to propagate to distant regions.
4.2.3 Contextual constraints
Since the drawing is usually related to the underlying
reference image, we analyze the properties of both
the drawn strokes and the reference image to
infer possible relationships to control the global

Fig. 12 Predicting the input exemplar and output region. Left, above: the input stroke sequence (black dots, only a few indices are shown for
clarity) on the reference image. Left, below: image features. Right, above: threshold lines and the image feature cost curves for s10, s11, s12
respectively. Right, below: corresponding predicted output regions. The cumulative number k is determined when both cost curves exceed the
threshold. Note that the third region prediction result is only for demonstration: since the exemplar only contains one stroke (i.e., k = 1), it is
not considered a valid exemplar and would not be used for synthesis.

Autocompletion of repetitive stroking with image guidance 589

distribution of strokes. The constraints we consider
are orientation O and radius R.

Artists usually adjust stroke directions to convey
curvature, but may sometimes randomize or fix stroke
orientation regardless of the depicted objects to create
different visual effects. Therefore, the problem is to
decide which case the input exemplar implies. We
first compute the edge tangent field (ETF) [43] for
the reference image and then calculate the angles
between the exemplar strokes and the ETF directions
at their centroids. If the standard deviation of the
angles is small (less than 15◦), we consider the stroke
orientations to be related to the ETF and take the
ETF as the orientation field; otherwise, we set a
default global coordinate frame at each point of the
orientation field.

Since density is inversely proportional to the
spacing between strokes, we reframe the spacing
problem as predicting a radius map that controls the
extents of stroke neighborhoods. First, we compute
the distance from each exemplar stroke to its nearest
neighbor. We assume a linear relationship between
these minimum distances r and the image features,
including image lightness l and gradient strength g

at a stroke’s centroid, represented as
r =

(
l g 1

)
· t (6)

where t denotes the coefficients to be found. Using
the fitted linear model, if the squared correlation
value is lower than 0.5 (the closer to 1, the better
explanation), we use the model to compute a radius
map. Otherwise, we consider the density to be
uniform and create a constant radius map using
the average spatial distance of the exemplar. We
then update the user interface with the computed
coefficients.

5 Evaluation

5.1 Approach

We conducted a pilot study to evaluate the utility
and usability of our approach. We compared three
modes through quantitative analysis and qualitative
feedback.

In autocompletion mode, users had full access to our
prototype, including autocompletion and interactive
editing.

In interactive batch filling mode (batch mode), users
were required to create a texture example first and

then manually specify properties for batch filling. It
simulates the sequential procedure in many IB-AR
methods (e.g., Ref. [21]), although they rarely allow
users to directly define examples on target images.
This mode was performed using our system with
autocompletion turned off.

In fully manual drawing mode (manual mode),
users had to manually draw each stroke without any
automatic synthesis.

We also tested the expressiveness of our system
through an open creation session and obtained
comments for future improvements.

5.2 Target session

The goal of this session was to compare the three
interaction modes in terms of utility and usability.
Since we aim to facilitate drawing using an image
scaffold, we included general users with different
backgrounds but focusing on less skillful users, who
are more likely to want to use reference images. We
thus recruited 12 participants, including nine novices
with little drawing experience, two amateurs with
some experience (P3, P4), and a student majoring in
illustration (P5). Most of the studies were conducted
on a Lenovo Miix 520 tablet with a stylus, in a
lab environment, except for two studies conducted
remotely using a mouse (due to the covid pandemic).

The study procedure consisted of a tutorial followed
by target tasks, and took each participant about two
hours in total.

Each participant was first given a brief introduction
to our system and then asked to fill the apple in
Fig. 4 with short hatches as a training task. They
were encouraged to vary the density and orientation
of input strokes and to become familiar with the
features of our system.

We used a within-subject design, in which
each participant was asked to reproduce two
target drawings (see Fig. 13) in all three modes:
autocompletion, batch mode, and manual mode. The
target drawings contained an object and a landscape,
common illustration topics (e.g., see Fig. 2). The
assigned order of modes was randomised over all
participants. Since we focus on region filling, we asked
the participants to draw the outlines of both images
in advance, so that they could focus on drawing
the textures during the study. We encouraged the
participants to finish each drawing as soon as possible,
preferably within about a dozen minutes, but without

590 Y. Chen, K. C. Kwan, H. Fu

Fig. 13 Target session tasks. (a, e) Reference photos. (b, f) Corresponding sample outputs.

any hard time limit. After completing the two
drawings in each mode, each participant filled in a
NASA-TLX questionnaire [44]. Finally, we asked the
participants about their preferred mode and usage
experience, and for other comments.

5.3 Open session

The goal of this session was to observe how users
interact with our system and to learn about user’s
subjective experiences. We invited seven participants
(one professional artist, two amateurs, and four
novices) for this session. They were asked to
create a drawing freely from the same reference
image (Fig. 15(a)) using our system. The reference
image was a portrait photo, also common in
illustrations. The only requirement was that the
drawings should contain some repetitive content. We
again commenced with a tutorial and conducted
the task on a Lenovo Miix 520 tablet with stylus.
The participants were encouraged to think aloud
and describe their thought processes and interaction
during this session. After this task, participants could
optionally create further drawings from any images
they wanted. Since our prototype does not contain
all common functionality of commercial drawing
tools, we allowed the participants to retouch the
resulting drawings, without adding more strokes, in
Photoshop.

5.4 Results and observations

5.4.1 Workload
Figure 14(a) shows the perceived workload scores
from the target session. Generally, the autocom-
pletion mode received the lowest (best) scores for
almost all factors. One-way ANOVA showed the
three modes have significant differences in physical
demand (F = 10.69, p < 0.001) while having no
significant difference in other factors. Regarding
physical demand, post-hoc pairwise tests showed that
the autocompletion mode and batch mode both rated
significantly lower than manual mode, but had no
significant difference from each other. This matches
our expectation, since automatic synthesis should
only reduce physical load and not cause extra pressure
over manual work.
5.4.2 Efficiency
We calculated the average completion time (Fig. 14(b))
and stroke count (Fig. 14(c)) for each mode and task.
Generally, the system synthesized about 82% of the
strokes in the autocompletion mode and about 92%
of the strokes in batch mode. Although manual mode
took the shortest time for participants to complete, it
also resulted in the fewest total strokes. We thus
calculated the strokes per minute for each mode:
autocompletion (111.03, SD = 38.76), batch (101.98,
SD = 45.13), manual (115.95, SD = 46.73). It

Autocompletion of repetitive stroking with image guidance 591

Fig. 14 Target session results. (a) Average NASA-TLX scores from 12 participants. Lower scores are better. (b) Average completion time.
(c) Average stroke counts. The number of system-generated strokes is labeled in each column.

Fig. 15 Example drawing results from the open session. Each case indicates the number of manual/autocompleted strokes.

turns out that automatic generation did not improve
efficiency, probably because the users spent extra
time adjusting and experimenting with the generated
effects instead of just drawing strokes. It should be
noted that such directed tasks omit the time taken to
explore alternative patterns, which, however, might
be high in a fully manual case.

5.4.3 Quality
We asked 30 external volunteers to evaluate the
quality of participants’ drawings.We randomized all
drawings created by the participants, showed each
output drawing alongside the target drawing, and
asked volunteers to rate the resemblance of the output
drawing to the target drawing, on a scale from 1
(very dissimilar) to 5 (very similar). The volunteers
were instructed to focus more on the overall stroke
distributions and flows instead of individual stroke

thickness and detailed shapes. We calculated average
scores for each mode: autocompletion (3.10, SD =
1.24), batch (3.09, SD = 1.21), manual (2.98, SD =
1.20). The quality of the drawings created with
automatic synthesis was slightly better than for the
fully manual drawings, but without a significant
difference. From the participants’ perspective, three
novices commented that the automated strokes were
better than their manual strokes, because they tend to
become impatient when manually drawing all strokes,
lowering quality.
5.5 Preferred mode
Seven participants preferred autocompletion mode
while the other five participants preferred batch
mode. Generally, autocomplete mode was considered
more convenient, but less precise; batch mode was
considered more precise, but requires too much

592 Y. Chen, K. C. Kwan, H. Fu

interaction. P12 commented, “autocompletion mode is
more straightforward, because you can see the filling
effects instantly without doing a lot of manipulation
beforehand; while in batch mode, you have to remember
the meanings of parameters and adjust them in order
to create strokes.” P10 also said, “compared to batch
filling, autocompletion mode provides a quick guess for
filled regions and allows me to get results more quickly
with less work.” However, autocompletion mode is “less
accurate in some vague and detailed regions, such as
the shadows of the boat, where it tends to include some
unwanted regions, so I had to manually subtract those

regions, which is a bit tedious”, according to P3. The
professional, P5, also preferred batch mode for being
able to precisely select regions. Therefore, we consider
the autocompletion function and the interactive editing
function to be complementary in usability.

5.6 Creative results and experience

Figure 15 shows outcomes from the open session.
Although from the same reference image and widely
using repetitive short strokes, the study participants
were able to create different results by varying
the stroke shapes and arrangement. Figure 16

Fig. 16 Sample results. For each example: left: reference image, center: manual (black) and autocompleted (red) strokes, right: final drawings.
In the last example, the strokes were created with our system first and then imported into Photoshop for background coloring.

Autocompletion of repetitive stroking with image guidance 593

demonstrates further results. Regarding the creation
experience, one user said “it is playful, and the
final result is also good”, two users described it as
“encouraging”, because the system allows beginners
to quickly create stylistic drawings, and one user
commented that she “felt creative when drawing with
this system”, because she could try out patterns
over image regions conveniently and she was more
comfortable with drawing from a reference image
than from scratch. The professional suggested that
the tool itself was somewhat limited to pointillism
and hatching styles, but could be helpful in adding
interesting textures to color paintings (e.g., see
Fig. 16(i)). Two users commented that the reduction
in workload is useful, but they also complained about
some inaccurate inferences of the autocompletion. We
further discuss this problem in Section 6.

6 Limitations and future work

From our observation and users’ feedback, we
identified several opportunities for improvement.
6.1 Accuracy of autocompletion

We rely on simple Lab* color and semantic
segmentation for region inference. While color
features suffice for most cases, regions with similar
colors but different semantics require sufficient
segmentation accuracy for region inference (e.g.,
see Fig. 13(c)). More advanced semantic selection
methods (e.g., Ref. [45]) might help to infer more
accurate regions. However, granularity of selection
requires further study. For example, when users draw
on a bear’s limb, is the intended region the whole
bear, or all limbs? We leave this as future work.

6.2 Visual blocking

Since the drawing and the system’s suggestions are
overlaid on the reference image, it can be difficult
for users to see the image when selecting parts
of the suggestions (see Fig. 17) or adding a new
layer of strokes. Although users can switch views
using a hotkey, it might be helpful to provide
some reference information, like image darkness or
boundaries, through additional visual hints [10, 16].

6.3 Higher-level image features

We only consider relationships between strokes and
low-level image features, like colors and flows, over
regions. By considering higher-level image features,

Fig. 17 Example of visual blocking. Left: reference image. Right:
canvas view.

such as elements and edges, it may be possible
to extend the scope of autocompletion, such as
autocompleting the sparse flowers in the foreground
of Fig. 16(i) through the correspondences between
strokes and elements.

6.4 Stroke types

Our method only supports short strokes, while artists
frequently also use long repetitive strokes [1]. It is
worth investigating the possibility of incorporating
continuous strokes [46] in our analysis and synthesis
framework and extending support to different input
strokes.

7 Conclusions

We have presented a new drawing concept and
designed an assisted drawing system to help users
autocomplete repetitive short strokes with guidance
from reference images while maintaining the flexible
control of manual drawing. By extending operation
history analysis and synthesis with image analysis,
our system is able to generate results adapted
to reference images and users’ prior inputs. We
conducted a pilot study to validate the usefulness
of our approach and show various drawing results
from the users.

594 Y. Chen, K. C. Kwan, H. Fu

Acknowledgements

We are grateful to Li-Yi Wei for his insightful
comments and suggestions. We also thank the
anonymous reviewers for feedback, and funding
from Adobe Research and the Deutsche Forschungs-
gemeinschaft, Project-ID 251654672-TRR 161.

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Dunn, A. Pen and Ink Drawing: A Simple Guide. New
Jersey: Three Minds Press, 2015.

[2] Adobe. Paint stylized strokes with the
Art History Brush. 2017. Available at
https://helpx.adobe.com/photoshop/using/painting-
stylized-strokes-art-history.html.

[3] Mart́ın, D.; Arroyo, G.; Rodŕıguez, A.; Isenberg, T.
A survey of digital stippling. Computers & Graphics
Vol. 67, 24–44, 2017.

[4] Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.;
Salesin, D. H. Image analogies. In: Proceedings of the
28th Annual Conference on Computer Graphics and
Interactive Techniques, 327–340, 2001.

[5] Fǐser, J.; Jamrǐska, O.; Lukác, M.; Shechtman, E.;
Asente, P.; Lu, J.; Sýkora, D. StyLit: Illumination-
guided example-based stylization of 3D renderings.
ACM Transactions on Graphics Vol. 35, No. 4, Article
No. 92, 2016.

[6] Gerl, M.; Isenberg, T. Interactive example-based
hatching. Computers & Graphics Vol. 37, Nos. 1–2,
65–80, 2013.

[7] Hegde, S.; Gatzidis, C.; Tian, F. Painterly rendering
techniques: A state-of-the-art review of current
approaches. Computer Animation and Virtual Worlds
Vol. 24, No. 1, 43–64, 2013.

[8] Kazi, R. H.; Igarashi, T.; Zhao, S. D.; Davis, R.
Vignette: Interactive texture design and manipulation
with freeform gestures for pen-and-ink illustration. In:
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 1727–1736, 2012.

[9] Xing, J.; Chen, H. T.; Wei, L. Y. Autocomplete
painting repetitions. ACM Transactions on Graphics
Vol. 33, No. 6, Article No. 172, 2014.

[10] Xie, J.; Hertzmann, A.; Li, W.; Winnemöller, H.
PortraitSketch: Face sketching assistance for novices.
In: Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, 407–417,
2014.

[11] Kang, H. W.; He, W. J.; Chui, C. K.; Chakraborty, U.
K. Interactive sketch generation. The Visual Computer
Vol. 21, Nos. 8–10, 821–830, 2005.

[12] Su, Q.; Li, W. H. A.; Wang, J.; Fu, H. EZ-
sketching: Three-level optimization for error-tolerant
image tracing. ACM Transactions on Graphics Vol. 33,
No. 4, Article No. 54, 2014.

[13] Li, G. B.; Bi, S.; Wang, J.; Xu, Y. Q.; Yu, Y. Z.
ColorSketch: A drawing assistant for generating color
sketches from photos. IEEE Computer Graphics and
Applications Vol. 37, No. 3, 70–81, 2017.

[14] Iarussi, E.; Bousseau, A.; Tsandilas, T. The drawing
assistant: Automated drawing guidance and feedback
from photographs. In: Proceedings of the 26th Annual
ACM Symposium on User Interface Software and
Technology, 183–192, 2013.

[15] Matsui, Y.; Shiratori, T.; Aizawa, K. DrawFromDrawings:
2D drawing assistance via stroke interpolation with a
sketch database. IEEE Transactions on Visualization
and Computer Graphics Vol. 23, No. 7, 1852–1862,
2017.

[16] Williford, B.; Doke, A.; Pahud, M.; Hinckley, K.;
Hammond, T. DrawMyPhoto: Assisting novices in
drawing from photographs. In: Proceedings of the 2019
on Creativity and Cognition, 198–209, 2019.

[17] Haeberli, P. Paint by numbers: Abstract image
representations. ACM SIGGRAPH Computer Graphics
Vol. 24, No. 4, 207–214, 1990.

[18] Benedetti, L.; Winnemöller, H.; Corsini, M.; Scopigno,
R. Painting with Bob: Assisted creativity for novices.
In: Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, 419–428,
2014.

[19] Tsai, H. C.; Lee, Y. H.; Lee, R. R.; Chu, H. K. User-
guided line abstraction using coherence and structure
analysis. Computational Visual Media Vol. 3, No. 2,
177–188, 2017.

[20] Kyprianidis, J. E.; Collomosse, J.; Wang, T. H.;
Isenberg, T. State of the “art”: A taxonomy of artistic
stylization techniques for images and video. IEEE
Transactions on Visualization and Computer Graphics
Vol. 19, No. 5, 866–885, 2013.

[21] Salisbury, M. P.; Wong, M. T.; Hughes, J. F.; Salesin,
D. H. Orientable textures for image-based pen-and-
ink illustration. In: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive
Techniques, 401–406, 1997.

[22] Hiller, S.; Hellwig, H.; Deussen, O. Beyond stippling—
Methods for distributing objects on the plane.
Computer Graphics Forum Vol. 22, No. 3, 515–522,
2003.

Autocompletion of repetitive stroking with image guidance 595

[23] Kalogerakis, E.; Nowrouzezahrai, D.; Breslav, S.;
Hertzmann, A. Learning hatching for pen-and-ink
illustration of surfaces. ACM Transactions on Graphics
Vol. 31, No. 1, Article No. 1, 2012.

[24] Gatys, L. A.; Ecker, A. S.; Bethge, M.; Hertzmann, A.;
Shechtman, E. Controlling perceptual factors in neural
style transfer. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 3730–
3738, 2017.

[25] Kaspar, A.; Neubert, B.; Lischinski, D.; Pauly, M.;
Kopf, J. Self tuning texture optimization. Computer
Graphics Forum Vol. 34, No. 2, 349–359, 2015.

[26] Nancel, M.; Cockburn, A. Causality: A conceptual
model of interaction history. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 1777–1786, 2014.

[27] Xing, J.; Wei, L. Y.; Shiratori, T.; Yatani,
K. Autocomplete hand-drawn animations. ACM
Transactions on Graphics Vol. 34, No. 6, Article No.
169, 2015.

[28] Peng, M.; Wei, L. Y.; Kazi, R. H.; Kim, V. G.
Autocomplete animated sculpting. In: Proceedings of
the 33rd Annual ACM Symposium on User Interface
Software and Technology, 760–777, 2020.

[29] Peng, M. Q.; Xing, J.; Wei, L. Y. Autocomplete 3D
sculpting. ACM Transactions on Graphics Vol. 37, No.
4, Article No. 132, 2018.

[30] Suzuki, R.; Yatani, K.; Gross, M. D.; Yeh, T.
Tabby: Explorable design for 3D printing textures.
In: Proceedings of the 26th Pacific Conference on
Computer Graphics and Applications: Short Papers,
29–32, 2018.

[31] Fǐser, J.; Asente, P.; Sýkora, D. ShipShape: A
drawing beautification assistant. In: Proceedings of the
International Symposium on Sketch-based Interfaces
and Modeling, 49–57, 2015.

[32] Zitnick, C. L. Handwriting beautification using token
means. ACM Transactions on Graphics Vol. 32, No. 4,
Article No. 53, 2013.

[33] Barla, P.; Breslav, S.; Markosian, L.; Thollot, J.
Interactive hatching and stippling by example. INRIA
Research Report RR-6461, 2006.

[34] Ijiri, T.; Mêch, R.; Igarashi, T.; Miller, G. An example-
based procedural system for element arrangement.
Computer Graphics Forum Vol. 27, No. 2, 429–436,
2008.

[35] Alves dos Passos, V.; Walter, M.; Sousa, M. C. Sample-
based synthesis of illustrative patterns. In: Proceedings
of the 18th Pacific Conference on Computer Graphics
and Applications, 109–116, 2010.

[36] Hsu, C. Y.; Wei, L. Y.; You, L.; Zhang, J. J.
Autocomplete element fields. In: Proceedings of the
CHI Conference on Human Factors in Computing
Systems, 1–13, 2020.

[37] Mortensen, E. N.; Barrett, W. A. Intelligent scissors for
image composition. In: Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive
Techniques, 191–198, 1995.

[38] Ma, C.; Wei, L. Y.; Tong, X. Discrete element textures.
ACM Transactions on Graphics Vol. 30, No. 4, Article
No. 62, 2011.

[39] Zhao, M.; Zhu, S. C. Customizing painterly rendering
styles using stroke processes. In: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Non-
Photorealistic Animation and Rendering, 137–146,
2011.

[40] Ma, C.; Wei, L. Y.; Lefebvre, S.; Tong, X. Dynamic
element textures. ACM Transactions on Graphics Vol.
32, No. 4, Article No. 90, 2013.

[41] Zhao, H. S.; Shi, J. P.; Qi, X. J.; Wang, X. G.; Jia, J.
Y. Pyramid scene parsing network. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 6230–6239, 2017.

[42] Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”:
Interactive foreground extraction using iterated graph
cuts. In: Proceedings of the ACM SIGGRAPH 2004
Papers, 309–314, 2004.

[43] Kyprianidis, J. E.; Kang, H. Image and video
abstraction by coherence-enhancing filtering. Computer
Graphics Forum Vol. 30, No. 2, 593–602, 2011.

[44] Hart, S. G.; Staveland, L. E. Development of NASA-
TLX (task load index): Results of empirical and
theoretical research. In: Advances in Psychology.
Amsterdam: Elsevier, 139–183, 1988.

[45] Chen, X.; Zhao, Z. Y.; Yu, F. W.; Zhang, Y. L.;
Duan, M. N. Conditional diffusion for interactive
segmentation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 7325–
7334, 2021.

[46] Tu, P. H.; Wei, L. Y.; Yatani, K.; Igarashi, T.; Zwicker,
M. Continuous curve textures. ACM Transactions on
Graphics Vol. 39, No. 6, Article No. 168, 2020.

Yilan Chen received her Ph.D. degree
from the School of Creative Media, City
University of Hong Kong, Hong Kong,
China. Her research interests include
computer graphics and human–computer
interaction.

596 Y. Chen, K. C. Kwan, H. Fu

Kin Chung Kwan received his B.Sc.
and Ph.D. degrees from the Chinese
University of Hong Kong in 2009
and 2015, respectively. He is now a
postdoctoral researcher at the University
of Konstanz. His research interests
include computer graphics and human–
computer interaction.

Hongbo Fu is a professor in the School
of Creative Media, City University
of Hong Kong. Previously, he had
postdoctoral research training at the
Imager Lab, University of British
Columbia, Canada, and the Department
of Computer Graphics, Max-Planck-
Institut Informatik, Germany. He

received his Ph.D. degree in computer science from Hong
Kong University of Science and Technology in 2007 and his
B.S. degree in information sciences from Peking University,
China, in 2002. His primary research interests fall in
the fields of computer graphics and human–computer
interaction. He has served as an associate editor of The

Visual Computer, Computers & Graphics, and Computer
Graphics Forum.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Image-assisted drawing
	Image-based artistic rendering
	Operation history-assisted authoring

	User interface
	Autocompletion
	Interactive editing
	Auxiliary functions

	Approach
	Stroke synthesis
	Problem statement
	Idea
	Stroke representation
	Initialization
	Neighborhood term
	Correction term
	Solver

	Inference
	Input exemplar E
	Output region M
	Contextual constraints

	Evaluation
	Approach
	Target session
	Open session
	Results and observations
	Workload
	Efficiency
	Quality

	Preferred mode
	Creative results and experience

	Limitations and future work
	Accuracy of autocompletion
	Visual blocking
	Higher-level image features
	Stroke types

	Conclusions

